Outline Spatial Sampling Design and Strategies Overview Regular Grid Designs Jun Zhu Department of Statistics and Department of Soil Science University of Wisconsin - Madison Cyclic Sampling Designs Madison, Wisconsin Design of Experiment <ロ> ◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ ● ● り Q @ **メロト (部) (注) (注) 注 り**(で Zhu (University of Wisconsin) Zhu (University of Wisconsin) Spatial Sampling Design Spatial Sampling Design Spatial sampling design Outline Example: a study of old-growth northern hardwood forests (Miller Overview et al., 2002). Consideration of biodiversity in natural resource management. ■ Spatial patterns of forest understory vegetation (herbs, shrubs, tree 2 Regular Grid Designs seedlings, saplings). Different species exhibit different spatial patterns within a given environment? 3 Cyclic Sampling Designs Biotic and abiotic factors in the environment are related to a species' spatial pattern? An important question: where should data be collected? Design of Experiment ■ The purpose is to design a sampling scheme that ensures scientific objectivity. Zhu (University of Wisconsin) Zhu (University of Wisconsin)

Spatial sampling design

- Suppose the study area of interest is *D*.
- Suppose measurements of Z will be taken at locations $\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_n$ in D, where $\mathbf{s} = (x, y)$ and n is the sample size. Where should they be?
- It depends!
- Possible objectives
 - Estimation of mean (e.g. average soil P in a field)
 - Estimation of variogram (e.g. map of soil P in the field)
 - Comparison of treatments (e.g. effect of a new fertilizer)

Spatial Sampling Design

- Possible prior information
 - Accessible study area and sampling locations
 - Affordable sample size
 - Condition of a study area

$-$ D \sim	latad	CLID	iooto
ne	lated	Sub	リせししら

- Survey sampling: design-based sampling versus model-based sampling (Gruijter and Braak, 1990; Särndal et al., 1992)
- Design of experiment and optimal design (Mead et al., 1993)
- Spatial sampling design and optimal sampling (Webster and Oliver, 2001)
- An excellent review article: Stein and Christien (2003)

◆□ ト ◆団 ト ◆ 豆 ト ◆ 豆 ト ◆ 豆 ・ か へ で

Zhu (University of Wisconsin)

Spatial Sampling Design

6/2

Outline

Zhu (University of Wisconsin)

- 1 Overview
- Regular Grid Designs
- 3 Cyclic Sampling Designs
- Design of Experiment

Zhu (University of Wisconsin)

Regular grids

- Triangular or isometric grid: tiling plane regularly with equilateral triangles.
- Rectangular grid: tiling plane regularly with squares.
- Hexagonal grid: tiling plane regularly with hexagons.

Spatial Sampling Design

7 / 29

Zhu (University of Wisconsin)

Spatial Sampling Design

8/

Regular grids

 $d_{\text{max}} = \text{maximum distance from any point in } D \text{ to the nearest grid point.}$

<ロ> →□ → →□ → → □ → → □ → りへで

Spatial Sampling Design 9 / 29

A plausible scenario

■ The goal is to estimate the overall mean

$$\mu = E(Z)$$
.

- Assume a regular spatial sampling grid with a fixed sampling density.
- Assume an exponential semivariogram for the spatial correlation structure.

メロト (部) (注) (注) 注 り(で

Zhu (University of Wisconsin)

Spatial Sampling Design

And the winner is...

Zhu (University of Wisconsin)

- \blacksquare A triangular grid is the most efficient design with the smallest d_{max} .
- That is, for the same sampling intensity, it places the sampling locations as far apart as possible while minimizing the area that is under-represented.
- A triangular grid is most efficient for most bounded variograms that have finite ranges.

Remarks

- Under some other assumptions, a hexagonal grid is the most efficient design.
- For convenience, a rectangular grid is often the preferred design in field work.
- Major drawbacks of a regular grid include poor variogram estimates at short distances and the potential problems of systematic design (as versus randomized design).

Zhu (University of Wisconsin)

Zhu (University of Wisconsin)

101

Main idea Outline Overview ■ To compensate for poor variogram estimates using regular grid designs, an improved method was proposed by Clayton and Hudelson (1995). 2 Regular Grid Designs ■ The main idea is to use a regular grid system, but sample at unequal spacings. Cyclic Sampling Designs In one dimension (1D), the design allows the estimation of variogram at all multiples of the smallest lag with a minimum number of sampling locations. 4 Design of Experiment ◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ ◆ロト ◆部 → ◆注 > ◆注 > ・注 り Q (*) Zhu (University of Wisconsin) Zhu (University of Wisconsin) Spatial Sampling Design Spatial Sampling Design 1D transect 1D transect Choice of specific sampling pattern is important. Let \times = sample; \circ = skip (sampling). Why not ■ A 3/7 cyclic sampling design with 2 repeats looks like: \times \times \circ \times \circ \circ \circ \circ \times \times \circ \times \circ \circ \circ with lag distances with lag distances × 1 2 - - - 7 - - - - -× 1 - 3 - - - 7 - - - - -- × 1 - - - 6 7 - - - -- × - 2 - - - 6 7 - - - -- - × - - - 5 6 7 - - - -- - - × - - - 4 5 - 7 - - -Lag distances 3 and 4 are missed. <ロ> (回) (回) (注) (注) 注 り(() ◆ロト ◆部 → ◆注 > ◆注 > ・注 り Q (*) Zhu (University of Wisconsin) Spatial Sampling Design 15/29 Zhu (University of Wisconsin) Spatial Sampling Design 102

Remarks

- For each lag distance, the proposed 3/7 design gives enough data for making the confidence intervals of the variogram small.
- There are more 7-lag distances than others in a 3/7 design, which cannot be avoided
- Other possible cyclic sampling designs are: 4/13, 5/21, 6/31, etc. (Clinger and Ness, 1976).

Zhu (University of Wisconsin)

Spatial Sampling Design

17/29

2D region

- Extension to a 2D region is straightforward, but only approximately optimal.
- A 3/7 design for both the x-axis and y-axis:

X	X	0	X	0	0	0	X	X	0	X	0	0	0
×	×	0	×	0	0	0	\times	\times	0	×	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
X	\times	0	\times	0	0	0	×	\times	0	X	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

- One can have different cyclic sampling designs for rows and columns.
- See Miller et al. (2002) for more details of the understory vegetation example.

メロト (部) (注) (注) 注 り(で

Zhu (University of Wisconsin)

Spatial Sampling Design

Sampling design in practice

In practice, how to choose a particular cyclic sampling design and hence the sample size?

- Onduct a pilot study to obtain a rough estimate of the range, sill, and nugget.
- Simulate data on a grid with the finest grain scale possible for sampling, based on the estimated range, sill, and nugget.
- Sample from the simulated data according to different sampling designs.
- For each sample, compute the fitted range, sill, and nugget, and the confidence intervals of the variogram.
- Evaluate the effect of different designs on the confidence interval width.
- Consult a statistician!

Example: Nitrogen cycling

- Assume exponential variogram model with
 - r = 2 (i.e. 95% effective r = 6).
 - r = 1 (i.e. 95% effective r = 3).
- Assume a 25 × 25 grid structure at a 2-m increment.
- Compare the use of 2D 3/7 cyclic sampling design with 1, 2, or 3 repeats.

4 D > 4 B > 4 B > 4 B > 9 Q (*)

Zhu (University of Wisconsin)

Zhu (University of Wisconsin)

103

Example

RIOCK	ireatment					
1	С	Α	В	D		
2	В	D	С	Α		
3	Α	В	D	С		
4	D	В	С	Α		

Distance between plots

Contrast	Block 1	Block 2	Block 3	Block 4	Average	
A vs B	1	3	1	2	1.75	
A vs C	1	1	3	1	1.50	
A vs D	2	2	2	3	2.25	
B vs C	2	2	2	1	1.75	
B vs D	1	1	1	1	1.00	
C vs D	3	1	1	2	1.75	
Average					1.67	

◆□ > ◆□ > ◆ = > ◆ = > 0 < 0 </p>

<ロ> →□ → →□ → → □ → → □ → → へ ○ ○

Zhu (University of Wisconsin)

Spatial Sampling Design

25 / 29

Average distance balanced design

- Not a balanced design since some treatments are on average closer than others.
- Simple switch in block 4 to DACB would result in much closer average distances.
- A strategy may be to strive for an average distance balanced design.

<ロト < 回 > < 直 > < 直 > < 直 > へ 直 > の < (で)

Zhu (University of Wisconsin)

Spatial Sampling Design

26 / 29

Nearest neighbor approach

■ Instead of distance, look at neighbors of each treatment:

A vs B: 2 A vs C: 3 A vs D: 0 B vs C: 1 B vs D: 4 C vs D: 2

- Similar problem as before. While switching block 4 would help, we can do better.
- There are 12 neighbor pairs and 6 trt pairs:

Block	Treatment						
1	С	Α	В	D			
2	В	D	Α	С			
3	Α	D	С	В			
4	D	С	В	Α			

- Arrangement above is balanced for nearest neighbors and distance.
- Often correlation in both directions (2D). Similar approaches apply.

References

- M. K. Clayton and B. D. Hudelson. Confidence intervals for autocorrelations based on cyclic samples. *Journal of the American Statistical Association*, 90:753–757, 1995.
- W. Clinger and J. W. Van Ness. On unequally spaced time points in time series. *Annals of Statistics*, 4:736–745, 1976.
- J. J. De Gruijter and C. J. F. Ter Braak. Model free estimation from spatial samples: a reappraisal of classical sampling theory. *Mathematical Geology*, 22:407–415, 1990.
- R. Mead, R. N. Curnow, and A. M. Hasted. *Statistical Methods in Agriculture and Experimental Biology, 2nd Edition*. Chapman & Hall, London, 1993.
- T. F. Miller, D. J. Mladenoff, and M. K. Clayton. Old-growth northern hardwood forests: Spatial autocorrelation and patterns of understory vegetation. *Ecological Monographs*, 72:487–503, 2002.
- C. E. Särndal, B. Swensson, and J. Wretman. *Model Assisted Survey Sampling*. Springer, New York, 1992.
- A. Stein and E. Christien. An overview of spatial sampling procedures and experimental design of spatial studies for ecosystem comparisons. *Agriculture, Ecosystems and Environment*, 94:31–47, 2003.
- R. Webster and M. A. Oliver. *Geostatistics for Environmental Scientists*. Wiley, West Sussex, 2001.

Zhu (University of Wisconsin)

Spatial Sampling Design

28/2

Zhu (University of Wisconsin)

Spatial Sampling Desig

105

I would like to thank...

- Bruce Craig, Purdue University
- Larry Douglass, University of Maryland College Park
- Murray Clayton, University of Wisconsin Madison
- Monica Turner, University of Wisconsin Madison

Zhu (University of Wisconsin)

Spatial Sampling Design